
Replicating the Entire Product Development Process: Building a

Better Alternative to Ratemyprofessors.com

Julian Chan
Senior Comps Final Paper: Computer Science

Occidental College
mchan2@oxy.edu

Abstract

This paper explores the end-to-end process of mod-
ern day product development. Criteria of the opti-
mal website is discovered through the analysis of ex-
isting research and is applied to the development of a
REST API, SQL web application. Specifically, this pa-
per details the step-by-step process in creating a fully
functional, more user experience-centric, alternative to
course review websites such as Ratemyprofessors.com.
From user research and market validation, to UI/UX
design, to development, each stage in the product de-
velopment process is replicated and documented. Some
of the web development tools utilized for this project in-
clude Node.js, React.js, and MySQL along with other
frameworks such as Bootstrap. Explanations on why
specific frameworks and tools were selected is also pro-
vided. This research and documentation should interest
those intrigued by web development, UI/UX design, or
the overall process on how modern day tech applications
are developed.

1 Introduction

The average American spends 24 hours a week on the
internet. That’s 1248 hours a year spent staring at a
blue screen scrolling through webpage after webpage.
As of 2019 there is over an estimated one billion web-
sites online, and yet most people spend their browsing
efforts on only a select few. Why do most people use
YouTube instead of Vimeo when they try to stream
online videos? Why do most people resort to Google
instead of Yahoo when they want to do a quick search?
These are the questions that fueled the inspiration to
delve into the world of web development. Specifically,
the goal for this project was to replicate the entire end-
to-end product development process from ideation, to
design, to development of a fully-functional REST API,
SQL server that serves as a better alternative to Rate-

myprofessors.com. This website, named ClassStats,
also attempts to embody all of the characteristics of
the “best” possible website. These characteristics in-
clude fast loading time, quick implementation, beau-
tiful user interface, carefully curated user experience,
and responsive capabilities. A course review type web-
site was chosen for this project because of its relevance
to college students. Every semester during course reg-
istration, students scour the pages of Ratemyprofes-
sors.com in hopes to find some bit of information that
will aid in their decision to enroll in a specific class or
not. However, Ratemyprofessors.com lacks in many as-
pects. The first being the quantity of course reviews it
provides. Ratemyprofessors.com has been active since
1999, garners an enormous 1.7 million professors, eight
thousand schools, and boasts an impressive six million
monthly visitors. And yet, most students find that the
professors they search for, some of which have been
teaching well over 10 years, have little to no reviews
to their name. The math doesn’t add up. In addition,
a second aspect that Ratemyprofessors.com is lacking
in, is its inability to produce high-quality, valid re-
views. The issue here is that everyone can submit a
review on Ratemyprofessors.com, the website does not
enforce any form of validation check to see if the user
writing the review actually took one of that professor’s
classes. It calls into question the robustness of the data
provided on the course review site. And so the motiva-
tion for this project was not just because course review
websites are extremely relevant to students, but also
because it has so much more potential than its current
alternative and improving upon it will only more ef-
ficiently assist students during the course registration
process. Moreover, the scope of this project was one
that required the embodiment of each role in a typical
product development team, being able to learn how a
UI/UX designer and developer problem solves in differ-
ent points during a product lifecycle will only deepen
the knowledge of anyone interested in how modern day

1



products are actually built.

Figure 1: ClassStats Login/Signup

2 Background

Living in the 21st century, we are constantly bom-
barded by various forms of online media. People of
all ages and backgrounds are consistently surfing so-
cial media platforms, scrolling through online news
sources, or viewing their favorite movies and TV shows
on streaming websites. We are interacting with the in-
ternet and its web pages repeatedly and increasingly.
And yet, despite the many beautiful, functional, user-
friendly websites out on the world wide web, there is
still a vast majority that are just plain awful. Some of
these websites have faulty loading issues, an inability
to process client requests quickly, a lack of adaptabil-
ity to different sized devices, a subpar user experience,
or are just flat-out ugly. There are so many different
factors that play a role in making sure that a visitor
to a website is engaged and satisfied. As explored in
“Relating Experience Goals with Visual User Interface
Design” by Jussi P.P. Jokinen, Johanna Silvennoinen,
and Tuomo Kujala, first impressions matter. “They
(participants) indeed made their appraisals on the basis
of first impressions” (Jokinen, 387). The smallest sub-
tlety could instantly trigger a subconscious response
which could cause users to immediately leave the web-
site upon entering. In order to ensure that this doesn’t
happen, all of these factors must be taken into account
well before the site is deployed onto the internet. There
is a huge variety of different processes and factors to
account for in the development of a website, which is
why most development teams assign multiple engineers
and designers different responsibilities in order to make
certain the final product is outstanding. These roles
include a front-end developer, back-end developer, and
a UI/UX designer. The individual responsibilities be-
hind each of these positions are extensive so most teams

will actually consist of more than just these three roles.
It is the UI/UX designer’s job to study the interactions
between the product and user in order to design and
create a mockup of the website before any of the actual
coding takes place. “Designers should emphasize more
on the experiential aspect of the interactions between
users and products, so as to understand potential UX
and to implement design for experience” (Zheng, 3).
The developers then use code to take the UI/UX de-
signer’s wireframes and bring them to life, as well as im-
plement different API’s that will help with the overall
functionality of the website. The front-end developer
collaborates with the back-end developer to make sure
that the front-end is integrated well with the database.
In reality, these three positions possess far more tasks
than what has been previously mentioned, but their
roles do center around these general responsibilities.

Some of the factors that contribute to a successful
website is a beautiful UI or user-interface, a carefully
thought-out UX or user-experience, speedy processing
of the webpage’s content, quick and easy data queries,
and a responsive capability to adapt to different sized
windows such as tablets and smartphones. Aside from
the UI/UX design of a website, all of the problems that
come with the functionality of a webpage can only be
fixed by the developers. And in fact, some of the so-
lutions that will be presented not only remedy these
issues, but also make the jobs of these developers sig-
nificantly easier. Most of these solutions are not neces-
sarily brand new ideas, but instead are tools, concepts,
or frameworks that are widely accepted by most de-
velopers in the industry today. These solutions will
further educate those who are looking into designing
and building their own website, or provide them with
enough knowledge to know what to look for in building
a web development team.

2.0.1 UI/UX

One of the first steps to making a good website is to
conduct proper, professional UI/UX design. Most peo-
ple use the terms UI and UX interchangeably when
talking about a website’s visual aesthetic. However,
the two terms actually refer to two separate concepts
of web design. User interface (UI) is centered around
the structuring of a webpage and how it looks, whereas
user experience (UX) is focused on the actual journey
through the website.

2.0.2 User Interface Design (UI)

User Interface design is how certain colors, icons, font-
sizes, image positioning, and other small details are
placed on a website in order to influence the user’s

2



perception of the site’s content. These small factors ac-
tually trigger significant psychological responses in the
human brain. “Color and screen design directions have
various psychological and social associations” (Cyr, 3).
For example, a psychological association could refer to
the association of the color red with danger. This is
why most delete/exit buttons and warning messages
are presented with the color red, as it represents a
destructive property such as wiping something from
memory or exiting out of a page. “The fact that
red is strongly associated with danger has led to the
widespread use of red icons and signs to indicate haz-
ards” (Hsieh, 740). And so if these features possessed
a color like green, it would elicit a conflicting response
within users as green is not typically used to describe
danger-associated actions. Tsuei-Ju Hsieh of the De-
partment of Information Communication in the Uni-
versity of Taipei, Taiwan, found that “warning icons
could be detected more quickly when colored red and
blue; however, most viewers favor red icons” (Hsieh,
741). Hsieh also found that certain colors influence
users’ perceptions of different icons and their mean-
ings. In Hsieh’s experiment, a group of 96 participants
were recruited from a course in experimental design in
the Chinese Culture University. Each participant had
experience using computerized devices and had used
them for roughly one hour a day for a period of five
years, every participant also had normal or corrected-
to-normal vision. The participants were asked to eval-
uate their opinions of certain icons via survey. These
icons were all altered in some way, characteristics such
as the original color of the icon, a grayscale image of the
icon, and the inclusion of a color complimentary to the
original icon, were manipulated for the participants.
After the experiment, Hsieh found that certain colors
for certain icons elicit a much faster response or recog-
nition within users as opposed to other colors. “Our
results confirm that correct color information is crucial
to naming accuracy and the speed at which icons are
recognized” (Hsieh, 750). So not only do these small
subtleties such as color make a website look visually ap-
pealing, but also they enable users to make quicker de-
cisions due to the associations certain colors have with
certain actions/meanings. Additionally, several other
factors also encourage users to make quicker decisions
and can even direct their attention to certain parts of
the screen. Skilled and experienced UI designers will
make it so that certain elements influence the user to
look at specific, more important parts of the webpage.
For instance, in an ecommerce website, the UI designer
will position the icons, sub headings, and other features
in a way that nudges the user to focus on the products
the website is selling. “The use of user-interface design

elements is to guide people’s behavior in digital choice
environments” (Schneider, 68). The entire goal for the
UI designer is to subtly influence the user’s decisions
and choices as they move about the webpage. “De-
signers of choice environments, or ‘choice architects,’
can thus use these heuristics and biases to manipulate
the choice environment to subtly guide users’ behav-
ior by gently ‘nudging’ them toward certain choices”
(Schneider, 67). This idea of visual components evok-
ing certain behavioral responses is explored in extreme
detail in Katerina Tzafilkou’s paper “Diagnosing User
Perception and Acceptance using Eye Tracking in Web-
Based End-User Development.” Tzafilkou’s goal in her
research is to both explore the experimentation and
validity of data compiled from eye tracking software,
as well as fundamentally prove the idea that certain
visual features of a well-designed website capture the
user’s attention long enough to encourage an action.
In her experiment, Tzafilkou presented a participant
pool with several different stimuli, among which in-
cluded different types of web pages, and recorded their
eye movements in relation to their actions on the com-
puter screen. Tzafilkou actually found that the per-
ceived ease of use of a functionality was related to the
number of eye fixations the user had, which eventually
turned into clicks. “Results in Table 3 confirm hypoth-
esis H3.1 since the correlation between perceived ease
of use and number of fixations that turned into clicks
is significant at the 0.01 level” (Tzafilkou, 33). Essen-
tially, the easier a button’s meaning on a website was
perceived by the user, the more fixations they had on
that part of the screen, which eventually led to them
clicking on that button. Tzafilkou’s research highlights
the importance of a well-designed user interface as it
can encourage users to perform certain actions. Thus,
an average UI designer is able to make a website look
amazing. However, an exceptional UI designer is also
able to design the website in a way that maximizes the
user’s visual perception of its contents.

2.0.3 User Experience Design (UX)

User experience (UX) is what the users feel and the
momentary evaluative impression they receive when in-
teracting with a product or service (Theopilus, 3). In
a web development context, it is the perception users
have of a website from a usability standpoint. Factors
such as ease of use, intuitive functionality, and time
optimization all play a role in the user experience of a
website (Theopilus, 3). Ease of use refers to how simple
a website’s navigation is to a new user. If a website is
difficult to navigate, meaning it’s hard to get from the
homepage to wherever the user wants to go, it can dis-

3



courage a user from ever returning to the website. In-
tuitive functionality refers to the perception of certain
features of the website. Features such as sub headings,
buttons, links etc. For example, typically when a user
wants to navigate back to the homepage of a website
their initial instinct is to scroll to the top of the page
and click on the website’s logo or the “Home” head-
ing in the navigation bar; this is an intuitive response.
However, if for some reason the aforementioned actions
redirected the user somewhere unexpected or the user
has to click through different parts of the website just
to get back to the homepage, it could negatively af-
fect their overall user experience. Time optimization
refers to the amount of time it takes for the user to
get to where they want to go or do what they want
to do. If it takes more than 10 clicks for the user to
purchase an item from a website, this can discourage
them from returning to use the website’s platform as
the user experience is not time efficient. An example
of a website that has an outstanding user experience
and expresses effective time optimization is AirBNB.
AirBNB embodies the “3 click philosophy,” where users
that enter their website have to perform no more than
three clicks in order to book a home (Williams, 1). The
user experience of a website can also be separated into
three main stages, Expected UX, In-Progress UX, and
Overall UX (Theopilus, 4). Expected UX refers to the
user experience before they even begin to use the prod-
uct or service and is typically influenced by factors such
as past experiences, comments from peers, and reviews
from media. In-progress UX refers to the perceived
user experience when a user actually interacts with the
product or service. And finally, Overall UX refers to
the lasting impression the user is left with having inter-
acted with the product or service (Theopilus, 4). User
experience does not just refer to the user’s interaction
with the website, the entire user-product relationship
encompasses factors outside the two entities. “The in-
fluence on UX is comprised of the components of a user-
product interaction and its surroundings” (Lin, 1744).
Some of these surrounding factors can include the per-
ception of the product or service in printed media (arti-
cles, magazines), in video media (streaming platforms,
ads), and in indirect accounts (peer reviews) before the
user actually interacts with the product (Lin, 1744).
User experience designers have the more technical re-
sponsibilities when it comes to web design. They have
to do an extensive amount of market research on the
website’s product or service, as well as come up with
ideas that maximize the user journey through the web-
site. It is the user experience designer’s job to create
the wireframes for the website as well as design the
flow between each web page. The UX designer also

has to see how their design fairs and go through sev-
eral testing and refining stages through feedback from
test users. Once the design receives positive feedback,
the final adjustments are made and the design is con-
sidered complete.

2.0.4 Developer Inefficiencies

With the increased usage of the internet in day to day
life, users are more demanding than ever. Websites are
expected to load significantly faster than in the past
and developers are expected to deploy website updates
on a day to day basis. The entire process and evolu-
tion of web development has been accelerated due to an
upsurge in demand for functional, updated, fast web-
sites (Aggarwal, 133). As a result, the traditional ap-
proaches to web development have become obsolete and
in dire need for supplementary assistance. Although
it works just fine, the old-school approach of linking
multiple HTML, CSS, and JavaScript files together to
create a website has become insufficient. A little back-
ground on what each of the three aforementioned pro-
gramming languages do. Hypertext Markup Language,
or more commonly referred to as HTML is the extreme
basics of a website. HTML is typically used to compile
all of the site’s raw content such as text headers, but-
tons, images, paragraphs, links, forms, and videos into
one file. “HTML has a set list of tags (such as header,
anchor, paragraph, etc.). Tags denote the type of in-
formation. The Web browser uses these tags to display
the text appropriately in a manner best suited for the
client hardware, software, and user preferences” (Blan-
sit, 396). Think of HTML as the skeleton of a website.
Cascading Style Sheets or more commonly referred to
as CSS, is responsible for the styling of the different
HTML components on a website. Things such as mak-
ing the header on a website the color blue, size 30 font,
and positioned 150 pixels to the right are all results
of CSS. Additional examples include making an im-
age larger or smaller, or styling a button into the color
green with rounded edges. Think of CSS as the flesh
and exterior features to the existing HTML skeleton,
it is primarily responsible for making the website look
nicer by altering existing components in the HTML
file. JavaScript is responsible for the functionality of
the website. Specifically, how certain elements on a
website interact with each other and the user. For ex-
ample, making the user’s name pop up on the screen
after he logs in, or pre-loading the content of the web-
site so that everything appears at the same time are
all products of JavaScript. Although the traditional
approach to web development is still used today, most
developers are turning to specific “stacks” to meet the

4



demands of huge enterprise web applications (Aggar-
wal, 132). A “stack” is a set of programming languages
and frameworks a developer uses to program both the
front-end and back-end of a website. A stack that is
widely used today and is proven to assist developers in
modern day web development is the MERN stack.

2.0.5 MERN Stack

The MERN stack refers to “an end-to-end framework
for developing dynamic web-applications, starting from
the top (code running in the browser) to the bottom
(database)” (Aggarwal, 133). The MERN stack con-
sists of four primary programming tools that all revolve
around one central programming language, JavaScript.
The four tools are MongoDB, Express.js, React.js, and
Node.js. The reason why developers are turning to
stacks like the MERN stack is because of its ability
to create extremely fast-processing web pages, as well
as the comfortability it provides as everything is cen-
tered around JavaScript concepts and methodologies.
In addition, all of these tools are open-sourced, mean-
ing that they are experiencing updates from developers
on a consistent basis, thus continually expanding their
usage capabilities.

React.js is a JavaScript library that enables the de-
velopment of large applications which also allows web-
pages to load new content without constantly needing
to refresh. Traditionally, whenever a user clicks on a
new page, the web browser deletes the entire code of
the previous page and loads a brand new one into the
browser. But now, instead of wiping out the entire code
of the previous page, React.js keeps the old code and
only loads new code for the new elements on the new
page. For example, a lot of websites have the same nav-
igation bar at the top, this bar could display links such
as home, contact us, about us, etc. So whenever a user
clicks on a new page, React.js is able to keep this navi-
gation bar at the top and only updates the elements of
the webpage that are different from the previous. This
results in much faster websites. React.js is also used
to develop reusable user interface components through
the building of modular pieces of code (Aggarwal, 133).
Not only does the React.js library assist the experience
of the website on the client side, but it also expedites
the development process by allowing the reuse of cer-
tain pieces of code, thus making the lives of developers
much easier. Instead of having to rewrite repetitive
code as a developer would have had to do in the past,
they are now able to refer to bits and pieces of their
already-written code in order to reuse them.

Node.js is a server-side “JavaScript runtime envi-
ronment that runs back-end application” (Aggarwal,

134). Developers are able to use Node.js to download
several third party packages as well as push new up-
dates to an already deployed website quickly and eas-
ily. In addition, Node.js allows for websites to func-
tion extremely quickly as it works on useful routines
in the background rather than stalling as it waits for a
user response. Ioannis K. Chaniotis, Kyriakos-Ioannis
D. Kyriakou, and Nikolaos D. Tselikas actually tested
out Node.js’ processing speed and how it compares
to other existing server-side frameworks in their pa-
per “Is Node.js a viable option for building modern
web applications? A performance evaluation study.”
In the study, Node.js was compared to other tools such
as Apache and Nginix, and was proven to be signifi-
cantly faster than both of them. “In the I/O test each
server responds with a ‘hello world’ string. Accord-
ing to Fig. 8, which depicts the requests per second
against concurrent connections, Nginx is more than
2.5 times faster in I/O operations than Apache, while
Node.js outperforms both” (Chaniotis, 1035). Jing
Huang and Lixiong Cai of the Zhejiang Science and
Technology University of Hangzhou, China, also exper-
imented with Node.js to evaluate its capabilities and
found that it is also extremely fast when given large
amounts of data. “Because of the single thread non-
blocking model, Node.js can deal with big data and
high concurrency in network communication rapidly
and efficiently when facing big data and high frequency
situations” (Huang, 6).

Express.js is a minimalist web framework for
Node.js. Express is responsible for processing differ-
ent user requests to a server, and enables developers
to write efficient HTML code by allowing the inclu-
sion of JavaScript statements within the HTML file.
Express.js working in conjunction with Node.js results
in an extremely fast functioning website. MongoDB is
a database tool that stores data in key value pairs in-
stead of in a grid of columns and rows (Aggarwal, 134).
It essentially simplifies the job for the back-end devel-
oper as the data is now compiled in a similar format to
objects in JavaScript. The simplification of MongoDB
allows for developers to update and complete back end
development much more quickly than before.

Essentially, stacks like the MERN stack enable de-
velopers to create beautiful, well-functioning websites
much faster than before, as well as significantly increase
the speed at which these websites run.

2.0.6 Other Frameworks/Libraries

A couple of other useful tools that assist developers
in keeping up with the fast-paced standard of modern
day web development include jQuery and Bootstrap.

5



Unlike the MERN stack, jQuery and Bootstrap are
frameworks and libraries, rather than actual program-
ming languages. They both essentially build and im-
prove upon existing methodologies of web development.
Specifically, jQuery simplifies the syntax and concepts
of JavaScript, and Bootstrap contains a vast resource
of already designed CSS elements. JQuery was devel-
oped in 2005 upon the idea that current JavaScript
syntax could be improved upon. And in fact, the key
difference that most people will notice when first using
jQuery is the extremely simple syntax relative to that
of JavaScript. In addition, jQuery also enables devel-
opers to manipulate HTML/CSS elements outside of
the actual HTML/CSS file, this idea was revolutionary
at the time of jQuery’s inception. “Up to that point,
I didn’t realize that JavaScript code could be beauti-
ful and elegant. Looking at Prototype inspired me to
want to build something even better and add capabili-
ties like manipulating HTML in the Document Object
Model [DOM]” (Severance, 7). Nowadays, many de-
velopers still use jQuery in their projects because of its
simplicity and also because it allows them to complete
updates and development goals more quickly. More-
over, jQuery is an open source tool, meaning that it
is constantly being updated and refined by developers
from all around the world.

Bootstrap is a CSS framework that possesses a huge
library of already-designed elements and is one of the
most popular front-end development frameworks to-
day. “The most popular ones today [CSS Libraries]
are Bootstrap and Foundation. . . ” (Temere, 1). In the
past, developers used to have to individually style each
and every element on a website with traditional CSS.
This means in order to make a button a certain color,
size, and shape, they would have had to manually code
for each of these specifications. But with Bootstrap,
they are now able to simply type in an existing button
type and instantly produce a beautiful already-styled
button that Bootstrap provides. The majority of web-
sites use the Bootstrap library simply because of the
convenience it provides when actually coding the web-
site. However, the main feature that Bootstrap pro-
vides that makes it almost an essential to the modern
day developer is its responsive capabilities. A glar-
ing issue with a lot of websites today is the fact that
they fail to resize according to the dimensions of the
screen they are being viewed from. A website viewed
on a desktop is not going to look as good on the much
smaller screen of a smartphone. So with Bootstrap,
developers are able to easily manipulate the elements
on the webpage and have them respond according to
the screen size they are being viewed from. “Boot-
strap takes the one framework, every device approach.

It can easily and efficiently scale websites and appli-
cations with a single code base. That means anything
from phones to tablets and to desktops with CSS media
queries” (Temere, 11).

2.0.7 Current Alternatives to My Website

It is without a doubt that students around the coun-
try rely on online rating/forum websites to develop an
understanding of a specific professor at their institu-
tion before they consider enrolling in their class. Web-
sites such as Ratemyprofessors.com, ProfessorPerfor-
mance.com, and PassCollege.com are all forum-styled
platforms where users can come and give a specific pro-
fessor at a college a review and a rating. Amongst
these platforms, Ratemyprofessors.com is easily the
most popular boasting a database of over 8000 schools,
1.7 million professors, and over 19 million ratings.
The website also has an estimated 6 million visitors a
month. Although Ratemyprofessors.com is extremely
popular, it does not mean that its contents are valid or
true. In fact, most professors on the website possess re-
views and ratings from an extremely small percentage
of their actual students. “Does ratemyprofessors.com
really rate my professor?” by Otto et al. (2008) ex-
plores the validity of the data provided by Ratemypro-
fessors.com through statistical analysis. “However, it
is also true that these ratings represent a small percent-
age of all students who register for courses taught by a
professor. Many professors have only one rating, and
even some of the most heavily rated professors, with
40 to 50 ratings, have had a great deal more students
in their classes” (Otto, 356). This issue of professors
receiving reviews only from a small group of students
subjects the data provided by Ratemyprofessors.com to
selection bias, due to the fact that only a small group of
students are actually willing to go out of their way and
give their professor a rating and write them a review.
This small sample size inherently skews the data and
ratings of the professors. The fact that Ratemypro-
fessors.com receives over 6 million monthly users and
only possesses 19 million ratings, despite having been
founded in 1999 is shocking. These statistics suggest
that less than 2% of Ratemyprofessors.com’s visitors
actually leave a rating. ClassStats attempts to be more
efficient and focus on converting visitors who search for
ratings, to visitors who contribute ratings.

3 Methods

Once the preliminary research was compiled on the
characteristics of a good website, the actual execu-
tion of the project was completed in four main phases.

6



Phase one consisted of the user research phase, validat-
ing initial assumptions and user demand. Phase two
consisted of UI/UX design, actually materializing the
envisioned product. Phase three consisted of database
architecture, this is a database-heavy web application
and so carefully organizing and structuring each part
of the database is essential. And finally, phase four
consisted of developing the website, putting everything
together to create ClassStats.

3.0.1 Phase One: User Research

During this phase, the blueprint for what’s to come
was formulated. Research needed to be conducted in
order to confirm the demand for the product. Thus,
four main hypotheses needed to be supported.

H1: The majority of students use course review web-
sites to aid them during the course registration process.
(Figure 2)

H2: Ratemyprofessors.com is the most popular course
review website. (Figure 3)

H3: The majority of students have never written a re-
view. (Figure 4)

H4: The majority of students are unable to find what
they are looking for when they visit these course review
websites. (Figure 5)

The first hypothesis needed to be validated because the
demand for a new and improved course review website
is necessary to drive the motivation to create this prod-
uct. There is no point in developing a website that no
one is going to use. The second hypothesis assists in the
establishment of a baseline for what ClassStats could
become. If Ratemyprofessors.com proved to be the
most popular website, then it would serve as the stan-
dard to wit ClassStats attempts to surpass. The third
hypothesis is a personal assumption developed from
the current statistics of Ratemyprofessors.com. The
fact that the course review giant experiences roughly 6
million monthly visitors but contains significantly less
course reviews, suggests that Ratemyprofessors.com
does a poor job at converting visitors into contribu-
tors, meaning that the majority of students that visit
Ratemyprofessors.com do not write reviews. And the
potential confirmation of the fourth hypothesis further
establishes a need for a new and improved course re-
view alternative.

Throughout the Summer of 2019, a survey attempt-
ing to validate these hypotheses was administered to

Figure 2: Survey Results H1

Figure 3: Survey Results H2

students at Occidental College as well as other select
universities around the United States. The survey re-
sults validated hypotheses #1-3, however it seemed
to have also invalidated hypothesis #4, almost 78%
of students report that they are typically able to find
what they are looking for when they visit Ratemypro-
fessors.com.

Although the initial results suggested that the ma-
jority of students are able to find what they are looking
for, a separate finding from the survey revealed that
this may actually not be the case. Figure 6 illustrates
that although students think that reviews provided by

Figure 4: Survey Results H3

7



Figure 5: Survey Results H4

Figure 6: Survey Results

Ratemyprofessors.com are sufficient, they are clearly
yearning for more specific pieces of information. Fig-
ure 6 illustrates the result of a portion of the survey
that prompted students to select which of the specific
course characteristics listed (as well as any they would
like to submit) they would like to see on a course review
website. Over 98% of students clicked on at least one
of these specific characteristics, suggesting that there
is an appeal for specificity in reviews for students. The
results from this phase provided adequate reasoning
to actually build ClassStats and even elicited further
insight as to how it can be a better alternative to Rate-
myprofessors.com.

3.0.2 Phase Two: UI/UX Design

During this phase, low-fidelity wireframes were created
of how ClassStats would eventually look and feel. A
mockup of the user-flow was designed that attempted
to solve the various issues Ratemyprofessors.com re-
tains. In order to specifically identify which of the
flaws from Ratemyprofessors.com needed to be reme-
died, user interviews were conducted. Four user inter-
views were completed with students from Occidental
College, University of Virginia, and Lehigh University.
During these interviews, techniques such as active lis-
tening and open-ended questions were utilized in order
to unbiasedly identify specific user pain points with
current course review websites. One of the biggest
takeaways from these interviews was the answer to
why the majority of students do not submit reviews on
Ratemyprofessors.com, because they never think to! “I
guess I just never thought to [submit a review], because
it seems time consuming. . . ” (Elaine Cheng (Student
at UVA), Interview by Julian Chan. Personal inter-
view. Los Angeles, October 6, 2019.). Currently the
user experience on Ratemyprofessors.com encourages
users to view ratings, not contribute to them. In fact,
a user needs to specifically go out of their way to sub-
mit a review on Ratemyprofessors.com, this process in-
cludes scrolling all the way to the bottom of the page
and then filling out a form with over 10 inputs in order
to submit one review. This process is extremely ineffi-
cient and evidently does a poor job at encouraging user
reviews. It is because of this poor user experience that
the majority of students don’t even think to submit a
review, and the ones that do submit reviews, do so only
because they have extrinsic motivations. This actually
skews the data because reviews are being completed
by students who have personal reasons to write these
reviews, this can result in overwhelmingly positive or
negative ratings for professors. Thus, ClassStats was
designed with this key goal in mind, convert visitors

8



into contributors by intertwining the user’s ability to
view ratings, with the ability to provide ratings, into
one cohesive user experience.

3.0.3 Phase Three: Database Architecture

In phase three, the database for ClassStats was
designed. Due to the nature of this website a carefully
thought-out database was essential to ensure the best
possible user experience. Because ClassStats’ success
is solely reliant on the delivery of good quality data
provided in the form of course ratings, a scalable, high-
performing, reliable database language was needed,
thus MySQL was chosen for this project. ClassStats’
database is designed with three things in mind. The
first is that each schema has a column to join with
other tables, ensuring the possibility to join multiple
different tables to provide multiple results. The second
is that each table is minimal and only contained
relevant attributes as to prevent unnecessary indexing
thus improving runtime for queries. And the third is
that each schema is designed as industry-standard as
possible, meaning that each part of the database is
carefully segmented ensuring the possession of relevant
information, as opposed to placing all the data in one
giant table. Over 16 schemas was created during this
process and included dependent entities as well as
identifying relationships. The database for ClassStats
is as follows:

General Information
- Students: StudentID, Email, Password, Name, Major
- Instructors: InstructorID, Name, DeptID
- Departments: DepartmentID, Name
- Courses: CourseID, Name, InstructorID, DeptID
- Takes: StudentNum, CourseNum, Semester
- Teaches: CourseID, InstructorID, Semester

Ratings
- Class Enjoyment: CourseID, Rating
- Class Difficulty: CourseID, Easy, Medium, Hard
- Class Type: CourseID, Lecture, Discussion
- Class Usefulness: CourseID, Useful, NotUseful
- Attendance Attn: CourseID, Attentive, Inattentive
- Exam Difficulty: CourseID, Easy, Medium, Hard
- Homework Load: CourseID, Heavy, NotHeavy
- Prof Approachability: CourseID, Approachable,
NotApproachable
- Prof Rating: CourseID, Rating
- Test Heavy: CourseID, Heavy, NotHeavy

Note that each of these ratings were chosen based
on a majority vote from the user survey. Each char-

acteristic was selected by more than 50% of students
when prompted on which course characteristic they
would find useful in aiding in their decision to en-
roll in a class (Refer to figure 6). The ratings work
by incrementing a specific attribute within the speci-
fied rating. For example, if a user found a class was
extremely useful and therefore clicks on the “Useful”
option for Class Usefulness, the database would incre-
ment the “Useful” column by one, thus recording the
submission. Each rating also possesses a “count” at-
tribute that keeps track of how many students provided
that specific rating for that specific course in order to
provide an average rating for each characteristic. So
if “Useful” contains a value of 8 and “NotUseful” con-
tains a value of 2, “Count” would contain a value of
10, and the displayed ratings are Useful = 80%, and
NotUseful = 20%.

3.0.4 Phase Four: Development

During this phase ClassStats finally became a reality.
The stack used for this web application was Node.js
for the server-side language, MySQL for the database,
and React.js, HTML, and CSS for the front-end. In
addition, libraries such as Bootstrap were used in or-
der to incorporate responsive capabilities into the web-
site. In order to complete this project within the
timeframe, a lot of preparation and practice had to
take place with specific web development frameworks.
Specifically, many practice websites/web apps utilizing
Node.js and Bootstrap were created in order to prepare
for this project. In addition, React.js was also learned
concurrently during each of the four phases, as to en-
sure quick and seamless implementation once develop-
ment begun. Node.js was selected for the server-side
language for this project due to its ability to work ex-
tremely quickly. With Node.js, updates and bug fixes
are able to be pushed to a live site within minutes
and require minimal unnecessary work. Node.js also
has a vast library of dependencies enabling efficient
integration with front-end languages and files. Some
of these advantages include, quick integration with
MySQL database, structured organization of HTTP re-
quests, and extremely powerful debugging capabilities.
MySQL was selected as the database language for this
project due to its scalability and reliability. MySQL
is famous for its ability to handle large quantities of
data. And so due to ClassStats’ requirement to accu-
mulate large amounts of data in the form of user rat-
ings, MySQL is the clear choice for this project as op-
posed to a non-relational database such as MongoDB.
React.js was probably the most important framework
for this project, not because of it’s extremely fast pro-

9



cessing time as discussed in the section 2.0.5, but be-
cause of its ability to dynamically load data from the
server without page refresh. As discussed above, one
of the biggest differences between ClassStats and Rate-
myprofessors.com is the newly combined user experi-
ence of both viewing ratings, and providing ratings.
ClassStats aims to encourage visitors to submit rat-
ings in a way that does not impair their user experi-
ence. And so utilizing a framework such as React.js
that enables users to submit ratings without constant
page refresh is imperative. Moreover, React.js allows
clients to render elements extremely quickly, allowing
for real time updates on the client side. Once each of
these frameworks and languages were selected, the de-
velopment process ensued. After several weeks of cod-
ing, simultaneously developing both the front-end and
the back-end, as well as integration with the database,
ClassStats was finally created.

3.0.5 Evaluation

This project should be evaluated on its ability to per-
form to the specifications listed in the original proposal
and initial vision. Specifically, it should be evaluated
based on if it was successfully created utilizing the spec-
ified tools such as React.js, MySQL, and Node.js, and
if the functionality of the website meets those specified
in the scope of the proposal.

4 Discussion: Results

4.0.1 Assumptions

Due to the time limitations of this project, some as-
sumptions had to be made in order to create the best
possible product. Specifically, the solution to one of the
initial problems regarding the validity of course reviews
was created under the premise that ClassStats would
partner with Occidental College. The assumption is
that ClassStats would have an official partnership with
Occidental, granting ClassStats access to the student
database providing information such as student emails,
student IDs, and course history. This way, ClassStats
would have the necessary tools to ensure that students
can only submit course reviews and ratings to classes
they have actually taken or are currently enrolled in.
This assumption is not too misguided and is actually
inspired by a similar system the University of Virginia
currently endorses. The University of Virginia has a
course review website specific to their university and
their curriculum, this website enables only their stu-
dents to view the site contents and provides informa-
tion such as student course history (Elaine Cheng (Stu-

dent at UVA), Interview by Julian Chan. Personal in-
terview. Los Angeles, October 6, 2019.). With this
assumption, ClassStats is able to present the visiting
user their currently enrolled courses, along with specif-
ically tailored pop-up messages based on the student’s
course history. It is this underlying assumption that
enables ClassStats to surpass Ratemyprofessors.com’s
current user experience, achieving the goal of convert-
ing visitors into contributors.

4.0.2 The Final Product - User Flow

The final product for ClassStats contains dummy stu-
dent/course history data, but contains real course, in-
structor, and department information pulled from the
Occidental course list website counts.oxy.edu. Data
pulled from this website includes, course ID, course
name, semester, and instructor name. The website is
fully functional and responsive to multiple devices, be-
low displays each wireframe with its mobile counterpart
along with an explanation.

1. The initial screen for ClassStats is a login/sign
up page. Users must sign up with their Occidental
college email in order to access the website’s contents.
Internally, the ClassStats server checks to see if the
school email is located in the Students database ensur-
ing the user’s enrollment in the college. Once the email
has been verified, the user successfully signs up and a
hashed password is stored in the database to that spe-
cific email. Once the user logs in, the client (device
ClassStats is being viewed from) stores a cookie with
the user and session’s information enabling the user
to exit and re-enter the website without having to re-
login. The session times out after 2 hours and if the
user has not been active on the website, ClassStats will
prompt the user to login again. An additional feature
throughout the website is a middleware function. This
middleware repeatedly checks to see if the client con-
tains a cookie possessing the user’s information and if
the session is still active, if both return true then the
server will render the webpage, if not, the server will
redirect the user to the login/sign up page. This mid-
dleware function is extremely useful as it prevents non-
Occidental College students from accessing the website
through copying and pasting a link. (Refer to figure 7
and figure 8).

10



Figure 7: ClassStats Login/Signup (Desktop)

Figure 8: ClassStats Login/Signup (Mobile)

2. Once the user logs in they are presented with the
home page that lists their current courses along with
three ratings for each course. The ratings displayed
are an aggregate average of all the ratings submitted
for that specific course taught by that specific profes-
sor. The goal with this home screen is to encourage
the user to provide ratings for the course they are cur-
rently taking. The theory is that when a user logs
in to ClassStats, presumably in search for ratings for
a potential class in the upcoming semester, they will
view the ratings for their currently enrolled courses and
provide their own rating. For example, if a user logs
in and sees that only 67% of students found Econ 101:
Principles of Economics useful, they can hover over the
“useful” bar and click to submit their own rating if
they also found it useful. Once they do, the database
is updated immediately and the updated percentages
are displayed. (Refer to figure 9 and figure 10).

Figure 9: ClassStats Homepage (Desktop)

Figure 10: ClassStats Homepage (Mobile)

3. If the user clicks on “Find a Course” in the nav-
igation bar they are presented with the Departments
page. This page pulls all the departments from the
database with a GET request and presents them in the
form of anchor tags (¡a¿ ¡/a¿) in HTML for the client.
The query used for this page is “SELECT * FROM
Departments.” (Refer to figure 11 and figure 12).

11



Figure 11: ClassStats Departments (Desktop)

Figure 12: ClassStats Departments (Mobile)

4. Once the user clicks on a specific department,
they are presented with all the courses listed by that
department. Data is pulled from the server with a GET
request similar to Departments. (Refer to figure 13 and
figure 14).

Figure 13: ClassStats Courses (Desktop)

Figure 14: ClassStats Courses (Mobile)

5. Once the user clicks on a specific class, they are
presented with all the professors that teach that specific
course. Data is pulled from the server with a GET
request similar to Departments. (Refer to figure 15
and figure 16).

Figure 15: ClassStats Professors (Desktop)

12



Figure 16: ClassStats Professors (Mobile)

6. Once the user finally accesses a specific class
taught by a specific professor, they are presented with
the “Class Stats” for the course. Each “Class Stat”
was chosen based on the results from the user survey in
phase one. Every rating was defined by at least 50% of
users as important in assisting in their decisions during
course registration. The ratings are presented in two
forms, a rating out of five stars, and a percentage. All
of the ratings are averaged based on the total number
of submissions and present the real time data from the
ClassStats database. The goal for this page is to allow
the user to scan the statistics enabling them to make a
more precise, informed decision on whether or not the
class interests them or not. Some of these statistics
are very essential during the decision making process.
For example, “Class Usefulness” reflects the perception
of previous students on the overall practicality of the
course beyond the scope of academics. And “Discus-
sion or Lecture based curriculum” is essential in as-
sisting students in making an informed decision due to
the fact that some students may find one teaching style
more preferable over the other. (Refer to figure 17 and
figure 18).

Figure 17: ClassStats Ratings (Desktop)

Figure 18: ClassStats Ratings (Mobile)

7. During the session, the server will search for a
course the user had taken in the past and had also not
provided a rating for, then it will prompt them to pro-
vide ratings for that course with a popup. This popup
will only appear once during the session, as repeated
popups would negatively affect the overall UX of the
website. The user must submit at least 3 ratings to
exit out of the popup, the goal here is for the user to
realize how easy it is to submit ratings on ClassStats
and to encourage this behavior moving forward. (Refer
to figure 19 and figure 20).

13



Figure 19: ClassStats Popup (Desktop)

Figure 20: ClassStats Popup (Mobile)

4.0.3 Concepts Used

There were many web development concepts used for
this project. All of which combined to deliver a fully-
functional, secure, REST API server. One of the main
concepts used for this project was the utilization of
HTTP requests. Also known as Hypertext Transfer
Protocol, HTTP is used to structure requests and re-
sponses over the internet. HTTP requires data to be
transferred from one point to another over a network.
Some HTTP requests used for ClassStats include GET
requests to render data on the client from the server,
and POST requests to send user data from the client to
the server in order to render specific elements or to up-
date the database. An example of a GET request would
be clicking on the “Computer Science” department, the
server pulls all the courses listed under “Computer Sci-
ence” and renders the data back onto the client. An
example of a POST request would be during login/sign
up, once a user signs up, the client uses a POST re-

quest so that the server can update the database with
the newly defined password.

Another concept used for this project was the
use of query string parameters. These parameters
are key-value pairs that appear inside a URL and
follow a question mark. These key-value pairs enable
the client to send data to the server quickly and
seamlessly through the URL of an HTTP request.
An example of how a query string parameter was
used for ClassStats is during the rendering of the
ratings for a specific course. When the user has
clicked onto a specific course to view its ratings, the
URL contains query string parameters that notifies
the server which data to pull from which table in
the database. The URL could look something like
“http://www.classstats.com/course?courseid=1615.”
In this URL, the query string parameter follows the ‘?’
and is listed as “course ID = 1615.” This parameter is
then sent to the server notifying it to pull ratings from
the database for the course where course ID = 1615.
This then allows the server to render unique data to
the client.

A third concept used for this project was the use of
JSON files to send data to and from the server. Also
known as JavaScript object notation, JSON files store
simple data structures and objects that enable the ease
of communication between server and client. An exam-
ple of how JSON files is used in ClassStats is on the
home page to render the specific name of the user that
is logged in. Once the user logs in, the server sends a
JSON file to the client that contains the user’s infor-
mation in the form of an object. Then all the client has
to do to render the data from the server is call upon
the user object as well as a key such as “name.” So to
render the specific name of the user on the home page,
the client calls “user.name” to render that information.

A fourth concept use for this project was MySQL
prepared statements. This concept is essential to en-
sure ClassStats is secure by preventing SQL injection.
A form of hacking, SQL injection refers to the abil-
ity of the client to bypass the specified SQL query on
the server by inputting a ‘;’ or closing apostrophe fol-
lowed by a new, destructive SQL query. In other words,
a simple query that displays data for a specific user,
could end up having a second query that deletes the
entire database, if not handled correctly. The use of
prepared statements prevents this from happening by
specifying a set SQL query and expected SQL parame-
ter. So if this parameter contains suspicious characters
such as a semicolon or another SQL query, the server
will return an error and prevent the destructive SQL
query from ever executing. Another privacy protection
protocol utilized for ClassStats is the use of hashed

14



passwords. Hashing refers to the one-way transforma-
tion of a password, which then turns the password into
another string. Once a password is hashed, it is virtu-
ally impossible to revert it back to the original string,
as the new hashed string possesses different characters,
takes on a different length, and is virtually indistin-
guishable from the original. For example, a password
such as “Tigers123” could be hashed into a string such
as “!3.ws#!m%$@dW.” Thus, this prevents users from
getting their passwords divulged if the database were
ever breached.

4.0.4 Features Completed

The final product contains many notable features that
make it both secure and efficient. ClassStats possesses
full user authentication capabilities, meaning login and
sign up are fully functional. A user can only signup on
ClassStats if they have an official Occidental College
email. Once they signup, their password is put through
a hash function before being stored in the database.
After the user has successfully logged in or signed up,
ClassStats stores a cookie on the user’s client contain-
ing the current session information as well as their user
information. This cookie is then called upon before ev-
ery web page is rendered through a middleware func-
tion which checks to see if the user is logged in be-
fore rendering a web page. This middleware function
ensures the security of ClassStats and prevents non-
Occidental College students from viewing course rat-
ings. If the middleware finds that the user has not
logged in, then the server will redirect the client back
to the login/sign up page. In addition, because the user
and session information is being stored on a cookie on
the user’s device, the user has the ability to exit out of
ClassStats and reload it without having to login again.

In addition, ClassStats is fully dynamic, meaning
that there is minimal hard code written for the front-
end. ClassStats is consistently making queries to the
database in order to render specific contents on the
client. Some examples include the courses page that
lists out all the offered courses by a specific depart-
ment. When the page is accessed, ClassStats executes
the MySQL prepared statement:

SELECT Courses.Name, Departments.Name AS
Department

FROM Courses, Departments
WHERE Courses.DeptID = (

SELECT DepartmentID
FROM Departments
WHERE Departments.name = ? )

AND Departments.Name = ? ;

Where all the ‘?’ are replaced with the selected de-
partment name.

ClassStats also utilizes React.js to send data to the
server through query string parameters. Once a user
clicks on a specific course, React.js stores the user’s
course history in “State,” a React.js concept that stores
property values in the form of an object that belongs
to a React.js component. And if the user submits a
rating, React.js first checks to see if the user had actu-
ally taken that specific course by looping through the
user’s course history in “State.” If the user’s previous
enrollment in the course is verified, React.js will send
the data to the server to update the database, and
the new aggregated rating average is displayed for the
user without page refresh. This would not be possible
without React.js as typical HTML form submissions re-
quire constant page refresh after each communication
with the server. If ClassStats ratings were developed
with regular HTML, then each time a user clicks on a
specific rating, the page would have to refresh, which
would negatively affect the overall UX of ClassStats.

Moreover, ClassStats contains an API that auto-
matically searches the database for a specific course
the user had previously enrolled in that they had not
yet submitted ratings for, and auto-prompts them to
submit ratings for it through a one-time popup. This
popup forces users to submit course ratings in order
to continue to view ClassStats’ contents. Once the
user submits their ratings, ClassStats stores a cookie
on the client that indicates they have already received
the popup, preventing ClassStats from prompting the
user again.

5 Discussion: Ethical Ramifica-
tions & Considerations

An ethical consideration for ClassStats would be the
misuse and exploitation of the service by students who
provide unjust ratings due to personal feelings or opin-
ions about a professor that have nothing to do with
academia. These ratings will be hard to identify, how-
ever, there are potential solutions. For example, mov-
ing forward ClassStats will keep track of every stu-
dent’s rating submission, with that record, ClassStats
could notify the admin that a specific student has been
only submitting negative ratings for their classes. This
notification would then spark further investigation and
if it is found that the student is failing to provide qual-
ity ratings, they will be prohibited from submitting rat-
ings all together. Another ethical consideration would
be to include more diverse, unique course metrics. Cur-
rently, ClassStats displays the same course character-

15



istics for every class. However, since no two classes are
identical, the inclusion of unique characteristics would
be useful in assisting students during course registra-
tion. For example, courses under the Math department
could include unique course ratings specific to Math-
ematics that would be inappropriate to include for a
History course.

6 Discussion: Strengths, Weak-
nesses, Future Work

One of the biggest strengths for this project was time
management. The deadlines specified in the original
proposal were consistently met and never needed any
alterations. In addition, the comprehension and im-
plementation of React.js was a success, however, to
a slightly less degree than originally anticipated. Ini-
tially, React.js was to be implemented with the entire
front-end for ClassStats. But as the weeks wore on,
it didn’t seem necessary to implement React.js for ev-
ery part of the website, and actually would have been
counter-productive. Ultimately, React.js was utilized
for the sole purpose of displaying and submitting rat-
ings, due to its dynamic capabilities of rendering new
data from the server without page refresh.

A weakness for this project was the inability to
deploy the website online before the specified Comps
deadline. Currently an issue with ClassStats is its in-
ability to perform under free server hosting plans. Af-
ter trying to deploy ClassStats on a free server host-
ing website (heroku) while utilizing a free database
host (clearDB), there were a few issues regarding max
database connections. This is mainly due to the fact
that ClassStats contains many SQL connections to ren-
der data for the client, and even though ClassStats per-
forms perfectly locally, it fails to deliver under restric-
tive online database plans. A solution to this would be
to minimize the amount of SQL connections ClassStats
maintains and combine multiple SQL queries into one
large query. However, this would negatively affect per-
formance in regards to runtime so perhaps an alter-
native solution would be to just upgrade to a less re-
strictive database plan with a larger amount of max
database connections per user.

Next steps for ClassStats includes potentially offi-
cially partnering with Occidental College. If ClassStats
were able to partner with Occidental, it would possess
the entire student database along with every student’s
course history, granting it the ability to finally pro-
vide robust, quality reviews for courses. In addition,
ClassStats could potentially replace the existing course
evaluation process Occidental currently enforces. In-

stead of having students submit a google form at the
end of the semester to provide professor feedback, they
could simply fill out their class’ ClassStats ratings. It is
without a doubt that course review websites are a nec-
essary evil, even though Ratemyprofessors.com perpet-
uates biased, unjust reviews by students that have not
even been verified, students will consistently rely on
these services for insight during course registration. So
if students are going to continue to utilize course review
websites, why not provide them with a better, more re-
liable alternative? The goal moving forward is to revisit
the user experience design of ClassStats and to test
each feature with multiple rounds of A/B testing and
QA testing, this would ensure that ClassStats exhibits
the most optimal user experience for converting visi-
tors into contributors. Moreover, a ClassStats mobile
app would also be ideal as smartphone users have con-
sistently resorted to utilizing mobile apps as opposed
to their website counterparts. Having a ClassStats mo-
bile app would open up many doors to opportunities
that web applications are simply unable to provide.
For instance, having a mobile app would enable the
use of push notifications. So during the semester, the
ClassStats app could hypothetically notify a student
to submit a course rating, this notification would only
require them to provide one, single rating. This use of
notifications would theoretically increase the amount
of course ratings and expand upon the user experience
of ClassStats beyond the website. With a re-organized
UX, addition of a mobile app, and the potential part-
nership with Occidental, there is no reason to believe
that ClassStats will not be replacing Ratemyprofes-
sors.com as the go-to course review website for students
at Occidental College.

References

[1] Aggarwal, Sanchit. “Modern Web-Development
Using ReactJS.” International Journal of Recent
Research Aspects, vol. 5, no. 1, Mar. 2018, pp.
133–137.

[2] Aggarwal, Sanchit, and Jyoti Verma. “Com-
parative Analysis of MEAN Stack and MERN
Stack.” International Journal of Recent Research
Aspects, vol. 5, no. 1, Mar. 2018, pp. 133–137.

[3] Almeida, Fernando, and José Monteiro. “The Role
of Responsive Design in Web Development.” We-
bology, vol. 14, no. 2, Dec. 2017, pp. 1–18.,
www.webology.org/2017/v14n2/a157.pdf.

[4] Baker, Stewart C. “Making It Work for Everyone:
HTML5 and CSS Level 3 for Responsive, Acces-

16



sible Design on Your Librarys Web Site.” Jour-
nal of Library and Information Services in Dis-
tance Learning, vol. 8, no. 3-4, 2014, pp. 118–136.,
doi:10.1080/1533290x.2014.945825.

[5] Blansit, B. Douglas.An Introduction to Cascad-
ing Style Sheets (CSS), Journal of Electronic Re-
sources in Medical Libraries, vol. 5, no. 4, 2008,
pp. 395–409., doi:10.1080/15424060802453811.

[6] Chaniotis, Ioannis K., et al. “Is Node.js a Vi-
able Option for Building Modern Web Applica-
tions? A Performance Evaluation Study.” Com-
puting, vol. 97, no. 10, 2014, pp. 1023–1044.,
doi:10.1007/s00607-014-0394-9.

[7] Comeaux, David J. “Web Design Trends in Aca-
demic Libraries—A Longitudinal Study.” Journal
of Web Librarianship, vol. 11, no. 1, 2016, pp.
1–15., doi:10.1080/19322909.2016.1230031.

[8] Cyr, Dianne and Ilsever, Joe and Bonanni, Car-
ole and Bowes, John. (2004). Website Design and
Culture: An Empirical Investigation. 33-.

[9] Ducasse, Stéphane, et al. “Seaside: A Flexible
Environment for Building Dynamic Web Appli-
cations.” IEEE Software, vol. 24, no. 5, 2007, pp.
56–63., doi:10.1109/ms.2007.144.

[10] Ducasse, Stéphane, et al. “Seaside: A Flexible
Environment for Building Dynamic Web Appli-
cations.” IEEE Software, vol. 24, no. 5, 2007, pp.
56–63., doi:10.1109/ms.2007.144.

[11] Elrom, Elad. “CSS, Bootstrap, and Responsive
Design.” Pro MEAN Stack Development, 2016,
pp. 131–164.

[12] Glassman, Nancy R., and Phil Shen. “One
Site Fits All: Responsive Web Design.” Jour-
nal of Electronic Resources in Medical Li-
braries, vol. 11, no. 2, 2014, pp. 78–90.,
doi:10.1080/15424065.2014.908347.

[13] Hsieh, Tsuei-Ju Tracy. “Multiple Roles of Color
Information in the Perception of Icon-Type Im-
ages.” Color Research and Application, vol. 42,
no. 6, 2017, pp. 740–752., doi:10.1002/col.22140.

[14] Huang, Jing, and Lixiong Cai. “Research on
TCP/IP Network Communication Based on
Node.js.” 2018, doi:10.1063/1.5033779.

[15] Jokinen, Jussi P P, et al. “Relating Experience
Goals With Visual User Interface Design.” Inter-
acting with Computers, vol. 30, no. 5, 2018, pp.
378–395., doi:10.1093/iwc/iwy016.

[16] Lin, Chiuhsiang Joe, and Lai-Yu Cheng. “Prod-
uct Attributes and User Experience Design: How
to Convey Product Information through User-
Centered Service.” Journal of Intelligent Manu-
facturing, vol. 28, no. 7, 2015, pp. 1743–1754.,
doi:10.1007/s10845-015-1095-8.

[17] “Responsive Web Design Tenets.” Building Re-
sponsive Data Visualization for the Web, 2015, pp.
24–69., doi:10.1002/9781119209560.ch2.

[18] Romano, Nicholas C., et al. “Architecture, Design,
and Development of an HTML/JavaScript Web-
Based Group Support System.” Journal of the
American Society for Information Science, vol. 49,
no. 7, 1998, pp. 649–667., doi:10.1002/(sici)1097-
4571(19980515)49:7¡649::aid-asi6¿3.0.co;2-1.

[19] Martin, Erik J. “Is Agile Web Development All
It’s Cracked up to Be?” EContent, vol. 41, no. 2,
Spring 2018, pp. 26–30.

[20] Miller-Francisco, Emily. “Creating Dynamic Web-
sites Using JQuery.” Computers in Libraries, vol.
30, no. 6, July 2010, pp. 26–28.

[21] Otto, James, et al. “Does Ratemyprofes-
sor.com Really Rate My Professor?” Assess-
ment and Evaluation in Higher Education, vol.
33, ser. 4, 23 July 2008, pp. 355–368. 4,
doi:10.1080/02602930701293405.

[22] Schneider, Christoph, et al. “Digital Nudg-
ing.” Communications of the ACM, vol. 61, no.
7, 2018, pp. 67–73., doi:10.1145/3213765.

[23] Severance, Charles. “John Resig: Building
JQuery.” Computer, vol. 48, no. 5, 2015, pp. 7–8.,
doi:10.1109/mc.2015.135.

[24] Subramanian, Vasan. “Pro MERN Stack.” 2017,
doi:10.1007/978-1-4842-2653-7.

[25] Temere, Befekadu Mezgebu. “Responsive Web
Application Using Bootstrap and Founda-
tion.” Helsinki Metropolia University of Applied
Sciences, 2017.

[26] Theopilus, Yansen, et al. “Persuasive-Universal
Design Model for Creating User Experience in
Product to Solve Behavior Problems.” 2018, pp.
2–8., doi:10.1063/1.5042929.

[27] Tzafilkou, Katerina, and Nicolaos Protogeros.
“Diagnosing User Perception and Accep-
tance Using Eye Tracking in Web-Based

17



End-User Development.” Computers in Hu-
man Behavior, vol. 72, July 2017, pp. 23–37.,
doi:10.1016/j.chb.2017.02.035.

[28] Wilkinson, Jaci. “Accessible, Dynamic Web Con-
tent Using Instagram.” Information Technology
and Libraries, vol. 37, no. 1, 2018, p. 19.,
doi:10.6017/ital.v37i1.10230.

[29] Williams, Sam, and Sam Williams. “The
Airbnb Story – Daily Book Notes –
Medium.” Medium.com, Medium, 31 Jan.
2018, medium.com/daily-book-notes/the-airbnb-
story-d6267a09c3c1.

[30] Zakas, Nicholas C. “The Evolution of Web De-
velopment for Mobile Devices.” Communications
of the ACM, vol. 56, no. 4, 2013, p. 42.,
doi:10.1145/2436256.2436269.

[31] Zheng, Pai, et al. “User-Experience Based Prod-
uct Development for Mass Personalization: A
Case Study.” Procedia CIRP, vol. 63, 2017, pp.
2–7., doi:10.1016/j.procir.2017.03.122.

18


